为解决齿轮泵的困油现象,通常在球墨铸铁泵盖上开设对称的卸荷槽,或向低压侧方向开设不对称卸荷槽,吸液侧采用锥形卸荷槽,排液侧为矩形卸荷槽,卸荷槽的深度也比液压工业中所用的齿轮泵要深。
球墨铸铁泵盖放置在刹车泵或离合器泵的储液罐上端。球墨铸铁泵盖上有橡胶密封垫防止刹车液漏出,水分进入。球墨铸铁泵盖可能是塑料或金属制成。形状有圆的,方的或长方的,由螺纹,螺栓或线箍定位。
泵体由吸水室和压水室两大部分组成。在吸水室的进口和压水室的出口分别是水泵进口法兰和出口法兰,用以连接进水管和出水管。在进口法兰和出口法兰上经常设有小孔,分别用以安装真空表和压力表。吸水室一般是一段逐渐收缩的锥形短管或等径直管,其作用是将水流引入叶轮,并向叶轮提供所需要的流态。锥管内常有一隔板,用以避免水流在进入叶轮前产生预旋。压水室的作用是收集叶轮流出的液体,并将液流引向出口。压水室的外形很像蜗牛壳,俗称蜗壳,叶轮就包在蜗壳里。
泵体的顶部设有排气孔(灌水孔),用以抽真空或灌水。在壳体的底部设有一放水孔,平时用方头螺栓塞住,停机后用来放空泵体内积水,防止泵内零件锈蚀和冬季结冰冻坏泵体。泵体由铸铁或铸钢等材料制造,其内表面要求光滑,以减小水力损失。
球墨铸铁泵盖用螺栓和泵体相连,其中部有膛孔,构成填料箱(涵),箱中加塞填料,或采用机械密封等形式高压柱塞泵,以防空气或水从轴和球墨铸铁泵盖之间的缝隙进入或流出。
球墨铸件生产工艺以及发动机缸体铸造概况
(一)、球墨铸铁生产工艺
凝固过程体积变化和压力损失是铸件缩松缺陷产生的直接原因。由于球墨铸铁的凝固过程既有金属液态收缩又有石墨化膨胀,既有初生阶段体积变化又有共晶阶段体积变化,所以球墨铸铁缩松产生的机理研究更显复杂。虽然有学者对球墨铸铁凝固过程的体积变化作了大量研究,但由于试验条件和方法不同得出的结论不甚一致。提出的体积变化计算模型(动态膨胀收缩叠加法)综合考虑了球墨铸铁凝固过程中的各个阶段,可以比较准确得出体积变化。凝固过程压力损失目前还没有准确计算模型。
但是将压力项引入到铸件缩松预测判据中,且得到比Niyama判据更精确的缩松预测图形。这充分说明凝固过程压力损失是缩松产生的主要因素之一。球墨铸铁体积变化和压力损失由球铁铸件生产的工艺决定。影响缩松产生的主要工艺因素有化学成分、孕育程度、模数及铸型强度等。
残余镁量高时,球铁缩孔缩松倾向大的观点已经得到普遍认同。缩孔缩松缺陷的形成,主要与镁在组织中分布不均和较大白口倾向有关。镁主要富集于珠光体和碳化物中,而该区是成分偏析和共晶凝固的最后区域,也是缩孔缩松危发区,镁的偏析,尤其是镁夹杂的富集为缩孔缩松形成创造了条件。
(二)、发动机缸体铸造概况
发动机是汽车的“心脏”,而缸体是发动机中重量重、复杂程度高、生产难度大的一个关键零件。如今,根据发动机结构紧凑、轻量化的设计要求,缸体不仅要有好的内在质量以提高其寿命,还要好的外在质量,包括尺寸精度、形位公差、光洁度以及加工性能等。对于整体式发动机缸体,要求缸筒要有较高的耐磨性,还要耐压、耐腐蚀。康明斯发动机缸体,不仅水泵壳,连机油泵壳、机油散热器壳都与缸体铸为一体。国外为了提高发动机功率,降低油耗,从技术和工艺上采取各种措施提高材质性能以减薄铸件壁厚,减轻铸件乃至整机重量,如今一般中小型发动机缸体的璧厚在3.5~4.5mm之间,壁厚最薄处已不足3mm。要铸造出这样薄壁、强度高、具有复杂内腔的铸件,就对我国的铸造技术提出了更高的要求,不仅要求材质强度高,均匀性好,而且对铸件尺寸精度和表面粗糙度的要求也十分严格。
在发动机缸体铸件的质量、生产技术和工装水平方面,我国与国外存在较大的差距:如尺寸精度,国外一般可达到ISO6~8级,国内较好的汽车、内燃机厂为ISO8~10级。表面粗糙度国外铸件一般为Ra12.5~50μm,国内一般厂为Ra25~100μm,如今,国外很多型号的发动机缸体和车身都采用了铝合金铸造,而我国大部分采用高牌号的灰铸铁铸造,车身架采用的是球墨铸铁铸造。
如今,随着铝质发动机缸体的增多,发动机缸体的铸造方法扩展了许多,如最常用的湿型粘土砂有箱高压造型卧式浇注法;压力铸造、中压铸造、低压铸造都可以用来生产铝合金缸体;金属型铸造可以生产简单的铝缸体;Cosworth法采用冷芯盒砂芯组芯造型,用于生产复杂薄壁铝合金铸件;消失模铸造采用干砂造型,可以生产薄壁、无拔模斜度的复杂铸件;树脂砂型铸造等。
泊头市艺兴铸造厂(http://www.btyxzz.com)主要产品有搅拌机配件、灰铸铁件、减速机轴、机械加工、数控车床加工等业务。